Composition of species, utilization, and conservation status of plant species in the sugar palm (Arenga pinnata) agroforestry system
DOI:
https://doi.org/10.61511/safses.v2i1.2025.1810Keywords:
plant species composition, plant species, plant species conservation status, agroforestryAbstract
Background: The goal of agroforestry is to integrate perennial crops, seasonal crops, and livestock to increase income, protect the environment, and support sustainable resource management by maintaining soil fertility, biodiversity, and food security. The agroforestry system's principal components, such as trees, agricultural crops, and livestock, are interdependent to optimize and sustainably utilize resources. This study aims to determine the composition of plant species in sugar palm (Arenga pinnata) agroforestry, to identify plant utilization, and to assess the conservation status of plant species within the sugar palm agroforestry system. Methods: This study employed a quantitative approach, using survey methods and plant data collection by exploring the research site and observing all plant species present, accompanied by photography using a digital camera. Findings: The results indicate that the sugar palm (Arenga pinnata) agroforestry system has significant potential in supporting environmental sustainability and community welfare. A total of 31 plant species were identified, with 12 of them having recorded data in the IUCN with a Least Concern category. Conclusion: Based on data from the IUCN Red List, 10 identified species are distributed in Sulaw esi Island, including Pangium edule Reinw, Arenga pinnata (Wurmb) Merr., Musa acuminata Colla, Hellenia speciosa (J.Koenig) S.R.Dutta, Macaranga tanarius (L.) Müll.Arg., Mimosa pudica L., Ficus septica Burm.f., Tacca leontopetaloides (L.) Kuntze, Ceiba pentandra (L.) Gaertn., and Ficus minahassae (de Vriese & Teijsm.) Miq. Novelty/Originality of this article: The novelty of this research lies in its comprehensive exploration of plant species composition, utilization, and conservation status within the sugar palm (Arenga pinnata) agroforestry system.
References
Adiaha, M. S., Buba, A. H., Tangban, E. E., & Okpoho, A. N. (2020). Mitigating global greenhouse gas emission: The role of trees as a clean mechanism for CO2 sequestration. Journal of Agricultural Sciences, 15(1), 101–115. https://doi.org/10.4038/jas.v15i1.8675
Astuti, T., Damanik, S. E., & . A. (2023). Identifikasi Tanaman Dalam Sistem Agroforestri Di Desa Tigaras Kabupaten Simalungun. Wana Lestari, 5(02), 354–361. https://doi.org/10.35508/wanalestari.v5i02.14154
Astuti, I. A. D., & Firdaus, T. (2017). Analisis kandungan CO2 dengan sensor dan berbasis logger pro di daerah Yogyakarta. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 1(1), 5–8. https://doi.org/10.30599/jipfri.v1i1.118
Audi, M., Ali, A., & Kassem, M. (2020). Green house Gases : A Review of Losses and Benefits. International Journal of Energy Economics and Policy, 10(1), 403–418. https://doi.org/10.32479/ijeep.8416.This.
Baderan, D. W. K., Rahim, S., Angio, M., & Salim, A. B. (2021). Keanekaragaman, kemerataan, dan kekayaan spesies tumbuhan dari geosite potensial Benteng Otanaha sebagai rintisan pengembangan Geopark Provinsi Gorontalo. Al-Kauniyah: Jurnal Biologi, 14(2), 264-274. https://dx.doi.org/10.15408/kauniyah.v14i2.16746
Destaranti, N., Sulistyani, S., & Yani, E. (2017). Struktur dan vegetasi tumbuhan bawah pada tegakan pinus di RPH Kalirajut dan RPH Baturraden Banyumas. Scripta Biologica, 4(3), 155-160. https://doi.org/10.20884/1.sb.2017.4.3.407
El saman, M. I. (2022). Global warming and decadal trends of sea surface temperature in Hurghada, Red Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 247–259. https://doi.org/10.21608/ejabf.2022.243713
Fikry, M. Y., & Sarjan, M. (2024). Peran Agroforestri Dalam Mendukung Pengelolaan Sumberdaya Alam Berkelanjutan. LAMBDA : Jurnal Ilmiah Pendidikan MIPA Dan Aplikasinya, 4(1), 16–22. https://doi.org/10.58218/lambda.v4i1.846
Food and Agriculture Organization. (2019). Agroforestry systems and their role in carbon sequestration. FAO Publication.
Gassner, A., & Dobie, P. (2022). Agroforestry : A primer. Design and management principles for people and the environment. In Unasylva. Bogor, Indonesia: Center for International Forestry Research (CIFOR) and Nairobi: World Agroforestry (ICRAF). https://doi.org/10.1177/1944451610364721
Gómez, M. U., Bueno, A. L., León, A. C., Uribe Bernal, J. I., & Hernández Aguirre, S. A. (2022). Traditional agroforestry systems: a methodological proposal for its analysis, intervention, and development. Agroforestry Systems, 96(3), 491–503. https://doi.org/10.1007/s10457-021-00692-w
Hardiatmi, J. M. S. (2008). Kontribusi Agroforestry Dalam Menyelamatkan Hutan Dan Ketahanan Pangan Nasional. INNOFARM : Jurnal Inovasi Pertanian, 7(1), 26–32. http://portalgaruda.fti.unissula.ac.id/?ref=browse&mod=viewarticle&article=114896
Harris, J. G., & Harris, M. W. (2001). Plant identification terminology. Spring Lake Publishing.
Hovenkamp, P., & De Joncheere, G. J. (1988). Additions to the fern flora of Sulawesi. Blumea: Biodiversity, Evolution and Biogeography of Plants, 33(2), 395-409. https://repository.naturalis.nl/pub/525691
Hutasuhut, M. A. (2018). Keanekaragaman tumbuhan herba di cagar alam Sibolangit. Klorofil: Jurnal Ilmu Biologi dan Terapan, 1(2), 69-77. https://core.ac.uk/download/pdf/266977801.pdf
Indriyanto. (2012). Ekologi hutan. Bumi Aksara.
Irawan, A., Iwanuddin, J. E., & Muhammad, F. (2020). Effect of fruit maturity and extraction treatment on germination percentage of Langusei (Ficus minahassae (Teysm. et Vr.) Miq). Jurnal Wasian, 7(2), 103-109. https://doi.org/10.62142/qm2s0687
Irundu, D., Idris, A. I., & Sudiatmiko, P. (2023). Biomassa Dan Karbon Tersimpan Diatas Tanah Pada Hutan Rakyat Agroforestri. Jurnal Hutan Dan Masyarakat, 15(1), 32–41. https://doi.org/10.24259/jhm.v15i1.26365
Irwan, Z. A. (2010). Prinsip-prinsip Ekologi Ekosistem, Lingkungan, dan Pelestariannya. Bumi Aksara.
IUCN. (2024). Plants of the World Online. https://powo.science.kew.org/
Jauhari, A., Asy’ari, M., Rahmadanti, R., Hazama, N., Dewi, N. L. K., & Martias, A. T. (2021). Study of the Potential of CO2 Absorption By Vegetation Based on Normalized Difference Vegetation Index (NDVI) Value. Konversi, 10(1), 13–17. https://doi.org/10.20527/k.v10i1.9760
Jia, Y., Xiao, K., Lin, M., & Zhang, X. (2022). Analysis of Global Sea Level Change Based on Multi-Source Data. Remote Sensing, 14(19), 1–16. https://doi.org/10.3390/rs14194854
Mander, U., Sohar, K., Tournebize, J., & Parn, J. (2016). Risk Analysis Of Global Warming-Induced Greenhouse Gas Emissions From Natural Sources. International Journal of Safety and Security Engineering, 6(2), 181–192. https://doi.org/10.2495/SAFE-V6-N2-181-192
Ministry of Environment and Forestry. (2021). Report on the strategy to achieve FOLU Net Sink 2030. Ministry of Environment and Forestry.
Parimita, H., & Ulfatun, F. (2023). Kebijakan Sustainable Forest Management Sebagai Bagian Indonesia’s Folu Net Sink 2030. Simbur Cahaya, 30(1), 45–65. https://doi.org/10.28946/sc.v30i1.2831
Pitopang, R., Khaeruddin, I., Tjoa, A., & Burhanuddin, I. F. (2008). Pengenalan jenis-jenis pohon yang umum di Sulawesi. UNTAD Press.
POWO Science. (2024). The IUCN red list of threatened species version 2020-1. https://www.iucnredlist.org.
Pressburger, L., Dorheim, K., Keenan, T. F., McJeon, H., Smith, S. J., & Bond-Lamberty, B. (2023). Quantifying airborne fraction trends and the destination of anthropogenic CO2 by tracking carbon flows in a simple climate model. Environmental Research Letters, 18(5). https://doi.org/10.1088/1748-9326/acca35
Raskin, B., & Osborn, S. (2019). The Agroforestry Handbook (1st ed.). Soil Association Limited.
Salamah, S., & Cahyonugroho, O. H. (2023). Green Road Vegetation CO2 Sequestration Potential on Transportation CO2 Emissions. Jurnal Kesehatan Lingkungan: Jurnal dan Aplikasi Teknik Kesehatan Lingkungan, 20(2), 267–280. https://doi.org/10.31964/jkl.v20i2.692
Sasaki, N. (2021). Timber production and carbon emission reductions through improved forest management and substitution of fossil fuels with wood biomass. Resources, Conservation and Recycling, 173. https://doi.org/10.1016/j.resconrec.2021.105737
Skrable, K., Chabot, G., & French, C. (2022). World Atmospheric CO2, Its 14C Specific Activity, Non-fossil Component, Anthropogenic Fossil Component, and Emissions (1750-2018). Health Physics, 122(2), 291–305. https://doi.org/10.1097/HP.0000000000001485
Soza, E. N., & Ayres, K. M. (2018). Global Warming and Climate Change. MOL2NET, International Conference Series on Multidisciplinary Sciences, 1–16. http://sciforum.net/conference/mol2net-04
Steenis, V. C. G. G. J. (2008). Flora untuk sekolah di Indonesia. Pradnya Paramita Press.
Sugiyono. (2011). Metode Penelitian Kuantitatif dan Kualitatif dan R&D. Alfabeta.
Sutrisna, T., Umar, M. R., Suhadiyah, S., & Santosa, S. (2018). Keanekaragaman dan komposisi vegetasi pohon pada Kawasan Air Terjun Takapala dan Lanna di Kabupaten Gowa Sulawesi Selatan. Bioma: Jurnal Biologi Makassar, 3(1), 12-18. https://doi.org/10.20956/bioma.v3i1.4258.
Syofiandi, R. R., Hilmanto, R., & Herwanti, S. (2016). Analisis Pendapatan Dan Kesejahteraan Petani Agroforestri Di Kelurahan Sumber Agung Kecamatan Kemiling Kota Bandar Lampung. Jurnal Sylva Lestari, 4(2), 17. https://doi.org/10.23960/jsl2417-26
Uttaruk, Y., van Khoa, P., & Laosuwan, T. (2024). A Guideline for Greenhouse Gas Emission Reduction and Carbon Sequestration in Forest Sector Based on Thailand Voluntary Emission Reduction Programme. Sains Malaysiana, 53(3), 477–486. https://doi.org/10.17576/jsm-2024-5303-01
Vasconcelos, V. V., & Sacht, H. M. (2012). Influence of Canopy Cover on Surface Temperature. Revista Brasileira de Geografia Física, 06(07), 1275–1291. https://doi.org/10.26848/rbgf.v13.07.p3275-3286
Wang, B., Niu, X., & Xu, T. (2023). Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China. Sustainability, 15(13), 1–13. https://doi.org/10.3390/su151310396
Zhu, J., Sun, Y., Zheng, X., Yang, K., Wang, G. G., Xia, C., Sun, T., & Zhang, J. (2023). A large carbon sink induced by the implementation of the largest afforestation program on Earth. Ecological Processes, 12(1), 8–17. https://doi.org/10.1186/s13717-023-00455-8
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Zen Setiawan Kadir, Dewi Wahyuni K. Baderan, Marini S. Hamidun

This work is licensed under a Creative Commons Attribution 4.0 International License.