Bruceshield: Internet of things integrated biometric and food detection system to eradicate brucellosis milk contamination

Authors

  • Jasa Dwi Tirtono Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Lupita Prashanti Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Raphael Abel Saputra Robotics and Artificial Intelligence Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • I Gede Wahyudi Suputra Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Dian Ayu Permatasari Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java 60115, Indonesia

DOI:

https://doi.org/10.61511/safses.v2i1.2025.1713

Keywords:

behavior, IoT, MCDA-LFB, biometric system, one health

Abstract

Background: Brucellosis is a zoonotic infectious disease caused by the bacteria of the genus Brucella spp. that causes abortion and chronic disease in animals and humans, resulting in economic losses worldwide. Brucellosis remains endemic in ruminant livestock in Indonesia, with a prevalence rate of 40% in ruminants and the highest incidence of cases is in Java Island. Vaccination, livestock movement monitoring, and diagnostic methods such as PCR can prevent this disease, but those methods are challenged by cost and a lack of trained personnel. Methods: The methodology used in this article is a literature review. Design ideas were identified from various international and national journal literature with the main focus on test methods consisting of Multiple Cross Displacement Amplification - Lateral Flow Biosensor (MCDA-LFB) test, Retinal Biometric system, Static QR-Code system, and Internet of Things (IoT). Findings: Bruceshield is a complete entity combining animal retinal biometrics, food detection using MCDA-LFB technology, and IoT for accurate identification, rapid detection, and effective data collection of IoT-ready devices. Some of these methods include MCDA-LFB for DNA analysis, retinal biometric systems for animal identification, and static QR codes that report parasite detection and enable traceability to the consumer in dairy products. Conclusion: Bruceshield presents an innovative solution to support the vision of 'Brucellosis Free Indonesia 2025' by integrating advanced diagnostic and monitoring systems, contributing to Sustainable Development Goal (SDG) number 3 and the One Health paradigm. This system holds the potential to enhance disease prevention, improve livestock traceability, and promote transparency and safety within the dairy and livestock industry. Novelty/Originality of this article: This study introduces Bruceshield, an integrated system combining retinal biometrics, MCDA-LFB technology, and IoT for accurate livestock identification, rapid disease detection, and effective data collection. 

References

Ahzan, N. A., & Irawati, I. (2022) Surveillance of Brucella Disease in Animal Health Officers in Enrekang Regency and Bone Regency, South Sulawesi Province. Pancasakti Journal of Public Health Science and Research, 2(3), 195-201. https://doi.org/10.47650/pjphsr.v2i3.479

Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2019). A Systematic Review on Supervised and unsupervised Machine learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M., Mohamed, A., Yap, B., Eds.; Springer: Cham, Switzerland, 3-21. https://doi.org/10.1007/978-3-030-22475-2_1

Armstrong, R., Hall, B. J., Doyle, J., & Waters, E. (2011). Scoping the scope’of a cochrane review. Journal of public health, 33(1), 147-50. https://doi.org/10.1093/pubmed/fdr015

Bello, S. A., Oyedele, Akinade, O. O., Bilal, M., Davila Delgado, J. M., Akanbi, L. A., Ajayi, A. O., & Owolabi, H, A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441.

Bounaadja, L., Albert, D., Chenais, B., Henault, S., Zygmunt, M. S., & Poliak, S. (2009). Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes. Vet. Microbiol, 137, 156–164. https://doi.org/10.1016/j.vetmic.2008.12.023.

De, B. K., Stauffer, L., Koylass, M. S., Sharp, S. E., Gee, J. E., & Helsel, L. O. (2008). Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J. Clin. Microbiol, 46, 43–49. https://doi.org/10.1128/JCM.01494-07.

Ekka, B. K., Puhan, N. B., & Panda, R. (2015). Retinal verification using point set matching. Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 159-163. https://doi.org/10.1109/SPIN.2015.7095402

Glanville, W. A., Conde-Alvarez, R., Moriyon, I., Njeru, J., Diaz, R., & Cook, E. A. J. (2017). Poor performance of the rapid test for human brucellosis in health facilities in Kenya. PLoS Negl Trop Dis. 11, e0005508. https://doi.org/10.1371/journal.pntd.0005508

Harshitha, S., Mythreyi, M. H. K., & Neha, B. M. (2023). IOT Based Food Spoilage Detector. International Journal for Research in Applied Science & Engineering Technology, 7(11). https://doi.org/10.22214/ijraset.2023.54562

Irvem, A., Yucel, F. M., Aksaray, S., & Bor, E. (2015). Comparison of a new and rapid method, Brucella Coombs gel test with the other methods in the serological diagnosis of brucellosis. Mikrobiyol. Bull. 49, 181–187. https://doi.org/10.5578/mb.8881.

Kaden, R., Ferrari, S., Alm, E., & Wahab, T. (2017). A novel real-time PCR assay for specific detection of Brucella melitensis. BMC Infect. Dis. 17, 230. https://doi.org/10.1186/s12879-017-2327-7.

Kahn, L. H., Kaplan, B., & Steele, J. H. (2007). Confronting zoonoses through closer collaboration between medicine and veterinary medicine (as ‘one medicine’). Vet. Ital, 43, 5–19. https://pubmed.ncbi.nlm.nih.gov/20411497/

Kaplan, B. (2021). ‘One Medicine-One Health’: An Historic Perspective. https://onehealthinitiative.com/wp-content/uploads/2022/08/One-Medicine-One-Health-An-Historic-Perspective-REVISED-SEPT1-2022-from-FEB1-2021.pdf.

Kattar, M. M., Zalloua, P. A., Araj, G. F., Samaha-Kfoury, J., Shbaklo, H., & Kanj, S. S. (2007). Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin-embedded tissues for rapid diagnosis of human brucellosis. Diagn. Microbiol. Infect. Dis., 59, 23–32. https://doi.org/10.1016/j.diagmicrobio.2007.04.002.

Kumar, G. U. S., Kanth, T. V. R., Raju, S. V., & Malyala, S. (2021). Advanced Analysis of Cardiac Image Processing Using Hybrid Approach. International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 1-6. https://doi.org/10.1109/ICAECT49130.2021.9392390.

Kusuma, A. J., Safitri, E., Praja, R. N., Tyasningsih, W., Yunita, M. N., & Wibawati, P. A. (2020). Deteksi Antibodi Brucella Abortus Pada Sapi Perah Betina Dewasa Di Kecamatan Puspo Kabupaten Pasuruan Menggunakan Metode Rose Bengal Test (RBT) Dan Complement Fixation Test (CFT). Jurnal Medik Veteriner, 4(2), 199-206. https://doi.org/10.20473/jmv.vol4.iss2.2021.199-206

Lai, Z., & Deng, H. (2018). Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron. Computational intelligence and neuroscience, 2061516. https://doi.org/10.1155/2018/2061516

Laine, C. G., Scott, H. M., & Arenas-Gamboa, A. M. (2022) Human brucellosis: Widespread information deficiency hinders an understanding of global disease frequency. PLOS Neglected Tropical Diseases, 16(5), e0010404. https://doi.org/10.1371/journal.pntd.0010404

Laine, C. G., Johnson, V. E., Scott, H. M., & Arenas-Gamboa, A. M. (2023). Global Estimate of Human Brucellosis Incidence. Emerging infectious diseases, 29(9), 1789–1797. https://doi.org/10.3201/eid2909.230052

Law, J. W., Ab-Mutalib, N. S., Chan, K. G., & Lee, L. H. (2014). Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol, 5, 770. https://doi.org/10.3389/fmicb.2014.00770.

Li, S., Liu, Y., Wang, Y., Wang, M., Liu, C. & Wang, Y. (2019). Rapid detection of Brucella spp. and elimination of carryover using multiple cross displacement amplification coupled with nanoparticles-based lateral flow biosensor. Frontiers in cellular and infection microbiology, 9, 78. https://doi.org/10.3389/fcimb.2019.00078

Lomotey, R. K., & Deters, R. (2013). Reliable Consumption of Web Services in a Mobile-Cloud Ecosystem Using REST. 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering. https://doi.org/10.1109/SOSE.2013.10

Mazumdar, J. B., & Nirmala, S. R. (2018). Retina Based Biometric Authentication System: a Review. International Journal of Advanced Research in Computer Science, 9(1), 711-718 http://dx.doi.org/10.26483/ijarcs.v9i1.5322

Mehra, T. (2024). The Critical Role of Role-Based Access Control (RBAC) in securing backup, recovery, and storage systems. International Journal of Science and Research Archive, 13(1), 1192-1194. https://doi.org/10.30574/ijsra.2024.13.1.1733

Ohtsuki, R., Kawamoto, K., Kato, Y., Shah, M. M., Ezaki, T., & Makino, S. I. (2008). Rapid detection of Brucella spp. by the loop-mediated isothermal amplification method. J. Appl. Microbiol, 104, 1815–1823. https://doi.org/10.1111/j.1365-2672.2008.03732.x

Patel, S. K., Parmar, J., Trivedi, H., Zakaria, R., Nguyen, T. K., & Dhasarathan, V. (2020). Highly sensitive graphene-based refractive index biosensor using gold metasurface array. IEEE Photonics Technology Letters, 32(12), 6814. https://eprints.um.edu.my/25409/

Perriam, J., Birkbak, A., & Freeman, A. (2019). Digital methods in a post-API environment. International Journal of Social Research Methodology, 1–14. https://doi.org/10.1080/13645579.2019.1682840

Perumal, S., & Thambusamy, V. (2018). Preprocessing by contrast enhancement techniques for medical images. International Journal of Pure and Applied Mathematics, 118(18), 3681-3688.

Sagi, M., Nesher, L., & Yagupsky, P. (2017). The BACTEC FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine one-week incubation period. J. Clin. Microbiol, 55, 942–946. https://doi.org/10.1128/JCM.02320-16.

Sannasi, C. S. R., & Rajaguru, H. (2019). Lung Cancer Detection using Probabilistic Neural Network with modified Crow-Search Algorithm. Asian Pac J Cancer Prev, 20(7), 2159-2166. https://doi.org/10.31557/APJCP.2019.20.7.2159.

Szymkowski, M., Saeed, E., Omieljanowicz, M., Omieljanowicz, A., Saeed, K., & Mariak, Z. A. (2020). Novelty Approach to Retina Diagnosing Using Biometric Techniques With SVM and Clustering Algorithms. IEEE Access, 8, 125849–125862. https://doi.org/10.1109/ACCESS.2020.3007656.

Uluğ, M., Yaman, Y., & Yapici, F. (2011). Clinical and laboratory features complications and treatment outcome of brucellosis in childhood and review of the literature. The Turkish Journal of Pediatrics, 53(4), 413–424. https://doi.org/10.24953/turkjped.2011.1793

Wang, Y., Wang, Y., Ma, A. J., Li, D. X., Luo, L. J., Liu, D. X., Jin, D., Liu, K. & Ye, C. Y. (2015). Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Scientific reports, 5(1), 11902. https://doi.org/10.1038/srep11902

Wang, Y., Wang, Y., Wang, H., Xu, J., & Ye, C. (2017). A label-free technique for accurate detection of nucleic acid–based self-avoiding molecular recognition systems supplemented multiple cross-displacement amplification and nanoparticles based biosensor. Artificial Cells Nanomed. Biotechnol, 46, 1671–1684. https://doi.org/10.1080/21691401.2017.1389748.

Wang, Y., Yan, W., Wang, Y., Xu, J., & Ye, C. (2018). Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor. J. Microbiol. Methods, 149, 80–88. https://doi.org/10.1016/j.mimet.2018.05.003.

Wulandari, I. Y., Silalahi, L. M., Indroasyoko, N., Ema, E., & Muhtar, M. (2021). Studi Literatur Review: Integrasi Kurikulum Pembelajaran Cerdas Biosensor Menggunakan Teknologi Internet of Things. Jurnal Tiarsie, 18(3), 97-102. https://doi.org/10.32816/tiarsie.v18i3.109

Yan, L. Zhou, J., Zheng, Y., Gamson, A. S., Roembke, B. T., Nakayama, S., & Sintim, H. O. (2014). Isothermal amplified detection of DNA and RNA. Molecular BioSystems, 10, 970–1003. https://doi.org/10.1039/c3mb70304e.

Zhang, X., Lowe, S. B., & Gooding, J. J. (2014). Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosensors & Bioelectronics, 61, 491–499. https://doi.org/10.1016/j.bios.2014.05.039.

Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2019). A Systematic Review on Supervised and unsupervised Machine learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M., Mohamed, A., Yap, B., Eds.; Springer: Cham, Switzerland, 3-21. https://doi.org/10.1007/978-3-030-22475-2_1

Armstrong, R., Hall, B. J., Doyle, J., & Waters, E. (2011). Scoping the scope’of a cochrane review. Journal of public health, 33(1), 147-50. https://doi.org/10.1093/pubmed/fdr015

Bello, S. A., Oyedele, Akinade, O. O., Bilal, M., Davila Delgado, J. M., Akanbi, L. A., Ajayi, A. O., & Owolabi, H, A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.103441.

Bounaadja, L., Albert, D., Chenais, B., Henault, S., Zygmunt, M. S., & Poliak, S. (2009). Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes. Vet. Microbiol, 137, 156–164. https://doi.org/10.1016/j.vetmic.2008.12.023.

De, B. K., Stauffer, L., Koylass, M. S., Sharp, S. E., Gee, J. E., & Helsel, L. O. (2008). Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J. Clin. Microbiol, 46, 43–49. https://doi.org/10.1128/JCM.01494-07.

Ekka, B. K., Puhan, N. B., & Panda, R. (2015). Retinal verification using point set matching. Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 159-163. https://doi.org/10.1109/SPIN.2015.7095402

Glanville, W. A., Conde-Alvarez, R., Moriyon, I., Njeru, J., Diaz, R., & Cook, E. A. J. (2017). Poor performance of the rapid test for human brucellosis in health facilities in Kenya. PLoS Negl Trop Dis. 11, e0005508. https://doi.org/10.1371/journal.pntd.0005508

Harshitha, S., Mythreyi, M. H. K., & Neha, B. M. (2023). IOT Based Food Spoilage Detector. International Journal for Research in Applied Science & Engineering Technology, 7(11). https://doi.org/10.22214/ijraset.2023.54562

Irvem, A., Yucel, F. M., Aksaray, S., & Bor, E. (2015). Comparison of a new and rapid method, Brucella Coombs gel test with the other methods in the serological diagnosis of brucellosis. Mikrobiyol. Bull. 49, 181–187. https://doi.org/10.5578/mb.8881.

Kaden, R., Ferrari, S., Alm, E., & Wahab, T. (2017). A novel real-time PCR assay for specific detection of Brucella melitensis. BMC Infect. Dis. 17, 230. https://doi.org/10.1186/s12879-017-2327-7.

Kahn, L. H., Kaplan, B., & Steele, J. H. (2007). Confronting zoonoses through closer collaboration between medicine and veterinary medicine (as ‘one medicine’). Vet. Ital, 43, 5–19. https://pubmed.ncbi.nlm.nih.gov/20411497/

Kaplan, B. (2021). ‘One Medicine-One Health’: An Historic Perspective. https://onehealthinitiative.com/wp-content/uploads/2022/08/One-Medicine-One-Health-An-Historic-Perspective-REVISED-SEPT1-2022-from-FEB1-2021.pdf.

Kattar, M. M., Zalloua, P. A., Araj, G. F., Samaha-Kfoury, J., Shbaklo, H., & Kanj, S. S. (2007). Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin-embedded tissues for rapid diagnosis of human brucellosis. Diagn. Microbiol. Infect. Dis., 59, 23–32. https://doi.org/10.1016/j.diagmicrobio.2007.04.002.

Kumar, G. U. S., Kanth, T. V. R., Raju, S. V., & Malyala, S. (2021). Advanced Analysis of Cardiac Image Processing Using Hybrid Approach. International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 1-6. https://doi.org/10.1109/ICAECT49130.2021.9392390.

Kusuma, A. J., Safitri, E., Praja, R. N., Tyasningsih, W., Yunita, M. N., & Wibawati, P. A. (2020). Deteksi Antibodi Brucella Abortus Pada Sapi Perah Betina Dewasa Di Kecamatan Puspo Kabupaten Pasuruan Menggunakan Metode Rose Bengal Test (RBT) Dan Complement Fixation Test (CFT). Jurnal Medik Veteriner, 4(2), 199-206. https://doi.org/10.20473/jmv.vol4.iss2.2021.199-206

Lai, Z., & Deng, H. (2018). Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron. Computational intelligence and neuroscience, 2061516. https://doi.org/10.1155/2018/2061516

Laine, C. G., Scott, H. M., & Arenas-Gamboa, A. M. (2022) Human brucellosis: Widespread information deficiency hinders an understanding of global disease frequency. PLOS Neglected Tropical Diseases, 16(5), e0010404. https://doi.org/10.1371/journal.pntd.0010404

Laine, C. G., Johnson, V. E., Scott, H. M., & Arenas-Gamboa, A. M. (2023). Global Estimate of Human Brucellosis Incidence. Emerging infectious diseases, 29(9), 1789–1797. https://doi.org/10.3201/eid2909.230052

Law, J. W., Ab-Mutalib, N. S., Chan, K. G., & Lee, L. H. (2014). Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol, 5, 770. https://doi.org/10.3389/fmicb.2014.00770.

Li, S., Liu, Y., Wang, Y., Wang, M., Liu, C. & Wang, Y. (2019). Rapid detection of Brucella spp. and elimination of carryover using multiple cross displacement amplification coupled with nanoparticles-based lateral flow biosensor. Frontiers in cellular and infection microbiology, 9, 78. https://doi.org/10.3389/fcimb.2019.00078

Lomotey, R. K., & Deters, R. (2013). Reliable Consumption of Web Services in a Mobile-Cloud Ecosystem Using REST. 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering. https://doi.org/10.1109/SOSE.2013.10

Mazumdar, J. B., & Nirmala, S. R. (2018). Retina Based Biometric Authentication System: a Review. International Journal of Advanced Research in Computer Science, 9(1), 711-718 http://dx.doi.org/10.26483/ijarcs.v9i1.5322

Mehra, T. (2024). The Critical Role of Role-Based Access Control (RBAC) in securing backup, recovery, and storage systems. International Journal of Science and Research Archive, 13(1), 1192-1194. https://doi.org/10.30574/ijsra.2024.13.1.1733

Ohtsuki, R., Kawamoto, K., Kato, Y., Shah, M. M., Ezaki, T., & Makino, S. I. (2008). Rapid detection of Brucella spp. by the loop-mediated isothermal amplification method. J. Appl. Microbiol, 104, 1815–1823. https://doi.org/10.1111/j.1365-2672.2008.03732.x

Patel, S. K., Parmar, J., Trivedi, H., Zakaria, R., Nguyen, T. K., & Dhasarathan, V. (2020). Highly sensitive graphene-based refractive index biosensor using gold metasurface array. IEEE Photonics Technology Letters, 32(12), 6814. https://eprints.um.edu.my/25409/

Perriam, J., Birkbak, A., & Freeman, A. (2019). Digital methods in a post-API environment. International Journal of Social Research Methodology, 1–14. https://doi.org/10.1080/13645579.2019.1682840

Perumal, S., & Thambusamy, V. (2018). Preprocessing by contrast enhancement techniques for medical images. International Journal of Pure and Applied Mathematics, 118(18), 3681-3688.

Sagi, M., Nesher, L., & Yagupsky, P. (2017). The BACTEC FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine one-week incubation period. J. Clin. Microbiol, 55, 942–946. https://doi.org/10.1128/JCM.02320-16.

Sannasi, C. S. R., & Rajaguru, H. (2019). Lung Cancer Detection using Probabilistic Neural Network with modified Crow-Search Algorithm. Asian Pac J Cancer Prev, 20(7), 2159-2166. https://doi.org/10.31557/APJCP.2019.20.7.2159.

Szymkowski, M., Saeed, E., Omieljanowicz, M., Omieljanowicz, A., Saeed, K., & Mariak, Z. A. (2020). Novelty Approach to Retina Diagnosing Using Biometric Techniques With SVM and Clustering Algorithms. IEEE Access, 8, 125849–125862. https://doi.org/10.1109/ACCESS.2020.3007656.

Uluğ, M., Yaman, Y., & Yapici, F. (2011). Clinical and laboratory features complications and treatment outcome of brucellosis in childhood and review of the literature. The Turkish Journal of Pediatrics, 53(4), 413–424. https://doi.org/10.24953/turkjped.2011.1793

Wang, Y., Wang, Y., Ma, A. J., Li, D. X., Luo, L. J., Liu, D. X., Jin, D., Liu, K. & Ye, C. Y. (2015). Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Scientific reports, 5(1), 11902. https://doi.org/10.1038/srep11902

Wang, Y., Wang, Y., Wang, H., Xu, J., & Ye, C. (2017). A label-free technique for accurate detection of nucleic acid–based self-avoiding molecular recognition systems supplemented multiple cross-displacement amplification and nanoparticles based biosensor. Artificial Cells Nanomed. Biotechnol, 46, 1671–1684. https://doi.org/10.1080/21691401.2017.1389748.

Wang, Y., Yan, W., Wang, Y., Xu, J., & Ye, C. (2018). Rapid, sensitive and reliable detection of Klebsiella pneumoniae by label-free multiple cross displacement amplification coupled with nanoparticles-based biosensor. J. Microbiol. Methods, 149, 80–88. https://doi.org/10.1016/j.mimet.2018.05.003.

Wulandari, I. Y., Silalahi, L. M., Indroasyoko, N., Ema, E., & Muhtar, M. (2021). Studi Literatur Review: Integrasi Kurikulum Pembelajaran Cerdas Biosensor Menggunakan Teknologi Internet of Things. Jurnal Tiarsie, 18(3), 97-102. https://doi.org/10.32816/tiarsie.v18i3.109

Yan, L. Zhou, J., Zheng, Y., Gamson, A. S., Roembke, B. T., Nakayama, S., & Sintim, H. O. (2014). Isothermal amplified detection of DNA and RNA. Molecular BioSystems, 10, 970–1003. https://doi.org/10.1039/c3mb70304e.

Zhang, X., Lowe, S. B., & Gooding, J. J. (2014). Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosensors & Bioelectronics, 61, 491–499. https://doi.org/10.1016/j.bios.2014.05.039.

Downloads

Published

2025-02-28

How to Cite

Tirtono, J. D., Prashanti, L., Saputra, R. A., Suputra, I. G. W., & Permatasari, D. A. (2025). Bruceshield: Internet of things integrated biometric and food detection system to eradicate brucellosis milk contamination . Social Agriculture, Food System, and Environmental Sustainability, 2(1), 33–47. https://doi.org/10.61511/safses.v2i1.2025.1713

Issue

Section

Articles

Citation Check