Water consumption analysis across the life cycle of beef: Environmental impacts and mitigation strategies
DOI:
https://doi.org/10.61511/jipagi.v2i1.1774Keywords:
beef, life cycle, organic, water consumption, water footprintAbstract
Background: Demand for beef is predicted to be risen by 74%, followed by the explosion of the global population by 9.7 billion in 2050. Australia as the most significant exporter of beef, together with America as the leading market, contribute vital roles. The increase in demand causes environmental impacts such as water scarcity. Methods: This study used a systematic literature review method to collect and disseminate relevant evidence from scientific sources related to air consumption in the beef and plant-based product supply chain. The process involved five main steps: problem formulation, data collection, data evaluation, evidence deduction, and interpretation of results. Findings: Based on the life cycle perspective, a kilogram of meat consumption from beef exported to America is 441.8–597.6 liters. The consumption includes processes such as nursery, fattening, cutting, transportation to Australian port, departure to America, and distribution within America. Conclusion: For instance, industrialization will reduce the water consumption, however, causes other environmental impacts. Therefore, dietary changes to vegetarianism combined with organic system becomes the best solution offered. Novelty/Originality of This Study: The novelty of this study lies in the life cycle analysis of water consumption in Australian beef exports to the US and highlights the trade-off between industrial efficiency and environmental sustainability while proposing dietary changes as a potential mitigation strategy.
References
ACCC (Australian Competition & Consumer Commission). (2016). Cattle and Cattle Market Study—Interim Report. ACCC. https://www.accc.gov.au/about-us/publications/cattle-and-beef-market-study-interim-report
Afrida, E., Rauf, A., Hanum, H., & Harnnowo, D. (2015). Residual effect of organic fertilizer and addition inorganic fertilizer to nutrient uptake, growth and productions of black soybean (Glycine max L. Merr) at rainfed areas. International Journal of Scientific & Technology Research, 4(2), 182–190. https://www.ijstr.org/final-print/feb2015/Residual-Effect-Of-Organic-Fertilizer-And-Addition-Inorganik-Fertilizer-To-Nutrient-Uptake-Growth-And-Productions-Of-Black-Soy-Bean-Glycine-Max-L-Merr-At-Rainfed-Areas.pdf
Arroyo, H. S. (2011). House fly, Musca domestica Linnaeus. Entomology and Nematology Department of University of Florida. https://edis.ifas.ufl.edu/publication/IN205
Badruzzaman, M., Hess, T., Smith, H., Upson, S., & Jacangelo, J. G. (2017). Value propositions of the water footprint concept for sustainable water utilities. Journal - American Water Works Association, 109(9), E393–E408. https://doi.org/10.5942/jawwa.2017.109.0100
Bogueva, D., Marinova, D., & Raphaely, T. (2017). Reducing meat consumption: The case for social marketing. Asia Pacific Journal of Marketing and Logistics, 29(3), 477–500. https://doi.org/10.1108/APJML-08-2016-0139
Da Silva, V. P. R., de Oliveira, S. D., Hoekstra, A. Y., Neto, J. D., Campos, J. H. B. C., Braga, C. C., de Araújo, L. E., de Oliveira Aleixo, D., de Brito, J. I. B., de Souza, M. D., & de Holanda, R. M. (2016). Water footprint and virtual water trade of Brazil. Water, 8(11), 517–528. https://doi.org/10.3390/w8110517
Dhar, A. R., Islam, M. M., Jannat, A., & Ahmed, J. U. (2018). Adoption prospects and implication problems of practising conservation agriculture in Bangladesh: A socioeconomic diagnosis. Soil and Tillage Research, 14(1), 77–84. https://doi.org/10.1016/j.still.2017.11.003
Tang, Z., Fan, F., Wang, X., Shi, X., Deng, S., & Wang, D. (2018). Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Ecotoxicology and Environmental Safety, 150, 116–122. https://doi.org/10.1016/j.ecoenv.2017.12.021
DFAT (Department of Foreign Affairs and Trade) (2012) Australia’s Trade with the Americas. DFAT.
Emas, R. (2015). The concept of sustainable development: definition and defining principles. Brief for GSDR, 2015, 10-13140. https://sdgs.un.org/sites/default/files/documents/5839GSDR%202015_SD_concept_definiton_rev.pdf
Ercin, A. E., Aldaya, M. M., & Hoekstra, A. Y. (2012). The water footprint of soy milk and soy burger and equivalent animal products. Ecological Indicators, 18, 392–402. https://doi.org/10.1016/j.ecolind.2011.12.009
FAO. (2006). World agriculture, towards 2030/2050. FAO. http://www.fao.org/fileadmin/user_upload/esag/docs/Interim_report_AT2050web.pdf
FAO. (2009). How to Feed the World in 2050. FAO. https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
FAO. (2011a). Countries by commodity. FAO. http://www.fao.org/faostat/en/#rankings/countries_by_commodity_exports
FAO. (2011b). Save and Grow. FAO. https://www.fao.org/4/i2215e/i2215e.pdf
FAO. (2015). The State of Food Insecurity in the World 2015: Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO. https://openknowledge.fao.org/server/api/core/bitstreams/63863832-4cb5-4e05-9040-4b22d9a92324/content
Fernie, S., Fernie, J., Moore, C. (2013) Principles of Retailing. Edinburgh Business School, Heriot-Watt University. https://doi.org/10.4324/9781315762432
Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy, 36, 23–32. https://doi.org/10.1016/j.foodpol.2010.10.010
Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of poultry, pork, and cattle: A comparative study in different countries and production systems. Water Resources & Industry, 1(2), 25–36. https://doi.org/10.1016/j.wri.2013.03.001
Hoekstra, A. Y. (2009). Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecological Economics, 68(7), 1963–1974. https://doi.org/10.1016/j.ecolecon.2008.06.021
Mekonnen, M. M., & Hoekstra, A. Y. (2010). A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrology and earth system sciences, 14(7), 1259-1276. https://doi.org/10.5194/hess-14-1259-2010
Hoekstra, A. Y. (2012). The hidden water resource use behind meat and dairy. Animal Frontiers, 2(2), 3–8. https://doi.org/10.2527/af.2012-0038
Hoekstra, A. Y. (2014). Water for animal products: A blind spot in water policy. Environmental Research Letters, 9(9), 1–3. https://doi.org/10.1088/1748-9326/9/9/091003
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual. Earthscan. https://doi.org/10.4324/9781849775526
Ilyas, F. (2015). Banned hormone still in use in dairy business despite health hazards. DAWN. https://www.dawn.com/news/1209783
Jalava, M., Kummu, M., Porkka, M., Sieber, S., & Varis, O. (2014). Diet change—a solution to reduce water use? Environmental Research Letters, 9(7). https://doi.org/10.1088/1748-9326/9/7/074016
Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the Royal Society of Medicine, 96(3), 118–121. https://doi.org/10.1177/014107680309600304
Krause, M. K., & Otzel, G. R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Animal Feed Science and Technology, 126(3–4), 215–236. https://doi.org/10.1016/j.anifeedsci.2005.08.004
Mantorova, G. F. (2017). Heavy metals technogenic pollution of plough lands arable layer in the Chelyabinsk region. IOP Conference Series: Materials Science and Engineering, 262(1). https://doi.org/10.1088/1757-899X/262/1/012218
Mekonnen, M. M., & Hoekstra, A. Y. (2010). The green, blue, and grey water footprint of farm animals and animal products. Daugherty Water for Food Global Institute. https://www.waterfootprint.org/resources/Report-48-WaterFootprint-AnimalProducts-Vol2_1.pdf
Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415. https://doi.org/10.1007/s10021-011-9517-8
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. American Association for the Advancement of Science, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
MLA. (2013). Meat standards Australia cattle information kit. Meat & Livestock Australia Limited. https://futurebeef.com.au/wp-content/uploads/Meat-Standards-Australia-beef-information-kit.pdf
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & Prisma-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4, 1-9. https://doi.org/10.1186/2046-4053-4-1
Nasrabadi, T., Mottaghifar, H., & Pourasghar, F. (2017). Life cycle assessment towards optimization of water use in an industrial cattle farming complex by focusing on virtual water approach (case study: Foka complex). Journal of Environmental Studies, 42(4). https://doi.org/10.22059/jes.2017.60937
OECD. (2016). Meat consumption. OECD Data. https://data.oecd.org/agroutput/meat-consumption.htm (Accessed October 21, 2017).
Oldenbroek, K., & Waaij, L. V. D. (2014). Textbook animal breeding: Animal breeding and genetics for BSc students. Wageningen University and Research Centre.
Owusu-Sekyere, E., Jordaan, H., & Chouchane, H. (2017). Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecological Indicators, 83, 32–40. https://doi.org/10.1016/j.ecolind.2017.07.041
RAGFAR. (2007). Ruminal acidosis—understandings, prevention, and treatment. Australian Veterinary Association.
Schroeder, J. W. (2017). Use caution when feeding dairy cattle high levels of concentrate. NDSU Agriculture. https://www.ag.ndsu.edu/drought/feeds-and-feeding/use-caution-when-feeding-dairy-cattle-high-levels-of-concentrate
SDSN. (2013). Solutions for Sustainable Agriculture and Food System. SDSN. https://irp-cdn.multiscreensite.com/be6d1d56/files/uploaded/TG07-Agriculture-Report-WEB.pdf
Shrestha, S., Pandey, V. P., Chanamai, C., Ghosh, D. K. (2013). Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal. Water Resources Management, 27( 15), 5223 - 5243. https://doi.org/10.1007/s11269-013-0464-3
Tajik, J., & Nazifi, S. (2011). Diagnosis of Subacute Ruminal Acidosis: A Review. Asian Journal of Animal Sciences, 5(2), 80 - 90. https://doi.org/10.3923/ajas.2011.80.90
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 5515, 281 - 284. https://doi.org/10.1126/science.1057544
Tory, S. (2014). How much water goes into your food? http://www.hcn.org/issues/46.14/how-much-water-goes-into-your-food
UN. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations. https://sdgs.un.org/2030agenda
UN-Water. (2014). Water and Energy Vol. 1. The United Nations World Water Development Report 2015. UNESCO (United Nations Educational, Scientific, and Cultural Organization). https://unesdoc.unesco.org/ark:/48223/pf0000231823
UN-Water. (2015). Water For A Sustainable World. The United Nations World Water Development Report 2015, UNESCO (United Nations Educational, Scientific, and Cultural Organization). https://www.unwater.org/publications/un-world-water-development-report-2015
UNDESA (United Nations Department of Economics and Social Affairs) (2015) World population projected to reach 9.7 billion by 2050. Available from UNDESA: http://www.un.org/en/development/desa/news/population/2015report.html.
USDA (United States Department of Agriculture). (2013). Organic Livestock Requirements. USDA. https://www.ams.usda.gov/sites/default/files/media/Organic%20Livestock%20Requirements.pdf
Vanham, D., Hoekstra, A. Y., Bidoglio, D. (2013) Potential water saving through changes in European diets. Environment International, 61, 45-56. https://doi.org/10.1016/j.envint.2013.09.011
Von Blottnitz, H. & Curran, M. A. (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production, 15(7), 607-619. https://doi.org/10.1016/j.jclepro.2006.03.002
WHO (World Health Organization). (2013). WHO traditional medicine strategy: 2014-2023. WHO Press. https://apps.who.int/gb/ebwha/pdf_files/EB152/B152_37-en.pdf
Wiedemann, S., Davis, R., McGahan, E., Murphy, C., Redding, M. (2017). Resource use and greenhouse gas emissions from grain-finishing cattle in seven Australian feedlots: A life cycle assessment. Animal Production Science, 57(6) 1149-1162. https://doi.org/10.1071/AN15454
Wiedemann, S., Henry, B. K., McGahan, E. J., Grant, T., Murphy, C. M., Niethe, G. (2015a). Resource use and greenhouse gas intensity of Australian cattle production: 1981–2010. Agricultural Systems, 133, 109-118. https://doi.org/10.1016/j.agsy.2014.11.002
Wiedemann, S., McGahan, E., Murphy, C., Yan, M.J., Henry, B., Thoma, G., Ledgard, S. (2015b). Environmental impacts and resource use of Australian cattle and lamb exported to the USA determined using life cycle assessment. Journal of Cleaner Production, 94, 67-75. https://doi.org/10.1016/j.jclepro.2015.01.073
Zhang, Y. D., Johnston, D. J., Bolormaa, S., Hawken, R. J., Tier, B. (2014) Genomic selection for female reproduction in Australian tropically adapted cattle. Animal Production Science, 54(1) 16-24. https://doi.org/10.1071/AN13016
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Hendro Putra Johannes, Muhammad Rahmat Akbar

This work is licensed under a Creative Commons Attribution 4.0 International License.