Assessment of soil mesofauna diversity, dominance, and environmental conditions in paddy field ecosystems with recommendations for sustainable agricultural practices

Authors

  • Alya Mahirotun Numa Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java 53182, Indonesia
  • Susanto Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java 53182, Indonesia

DOI:

https://doi.org/10.61511/jassu.v3i1.2025.1862

Keywords:

soil mesofauna, individual count, diversity, dominance, rice fields

Abstract

Background: The diversity and dominance of soil mesofauna are influenced by environmental factors such as soil temperature, pH, humidity, and texture. This study aims to analyze the soil mesofauna community, including species count, diversity, and dominance, and evaluate the environmental quality of rice fields in Pliken Village, Kembaran District, Banyumas Regency. Methods: The research was conducted using a survey method from January to June 2023. Soil samples were collected from three different locations (west, north, and south) with a one-month interval. Sampling was carried out twice a day, in the morning (06:0–008:00 Western Indonesia Time) and evening (18:00–20:00 Western Indonesia Time). Findings: A total of 820 individuals from 13 species, 11 families, and 9 orders of soil mesofauna were recorded. Solenopsis invicta (Red Ants) had the highest count (332 individuals), while Cimex sp. and Pulex sp. had the lowest (2 individuals each). The Shannon-Wiener diversity index ranged from 1.19 to 1.86, averaging 1.52, indicating moderate diversity. The Simpson dominance index ranged from 0.150 to 0.531, averaging 0.300, suggesting no species dominance. Environmental factors such as air temperature (22–28°C), soil temperature (23–28°C), and soil pH (6.1) were within optimal ranges for mesofauna life. However, humidity levels varied between 20–65%, with lower values in the dry season, potentially affecting mesofauna survival. Conclusion: The rice fields of Pliken Village support a moderately diverse soil mesofauna community with no dominant species. The environmental conditions are generally favorable, except for humidity fluctuations, which may impact mesofauna populations. Sustainable land management practices, such as reducing excessive pesticide use, are recommended to maintain soil fertility and biodiversity. Novelty/Originality of this article: This study provides a comprehensive assessment of soil mesofauna diversity and environmental quality in rice fields, offering valuable insights into the impact of agricultural practices on soil ecosystems. The findings highlight the need for sustainable land management to preserve soil biodiversity and fertility.

References

Adhikari, K., Lalitha, M., Dharumarajan, S., Kaliraj, S., Chakraborty, R., & Kumar, N. (2024). Introduction to soils: Soil formation, composition, and its spatial distribution. In Remote sensing of soils (pp. 3-11). Elsevier. https://doi.org/10.1016/B978-0-443-18773-5.00015-6

Ahmed, S. K. (2024). How to choose a sampling technique and determine sample size for research: A simplified guide for researchers. Oral Oncology Reports, 12, 100662. https://doi.org/10.1016/j.oor.2024.100662

Angst, G., Potapov, A., Joly, F. X., Angst, Š., Frouz, J., Ganault, P., & Eisenhauer, N. (2024). Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nature Communications, 15(1), 5005. https://doi.org/10.1038/s41467-024-49240-x

Antonangelo, J. A., Sun, X., & Eufrade-Junior, H. D. J. (2025). Biochar impact on soil health and tree-based crops: a review. Biochar, 7(1), 51. https://link.springer.com/article/10.1007/s42773-025-00450-6

Azal, B. (2022). The role of biotic and abiotic components in biodiversity. Global Science Research Journal, 1(1), 1–002. https://doi.org/10.15651/JBCR.22.1.1

Azhar, B., Razi, N., Sanusi, R., Lechner, A., Ashraf, M., Zaki, W. M. W., & Jafni, F. (2024). Vegetation structure and relative humidity drive the diurnal foraging activity of Malaysian giant ant workers in urban fragmented forests. Insect Conservation and Diversity, 17(2), 334-344. https://doi.org/10.1111/icad.12724

Bian, Z., Liu, L., Li, Y., Li, Y., & Ding, S. (2025). Effects of different fertilization treatments on ground-dwelling arthropods and their functional groups in agricultural landscapes. Frontiers in Ecology and Evolution, 13, 1437742. https://doi.org/10.3389/fevo.2025.1437742

Bicho, R. C., Chidiamassamba, S. B., Scott-Fordsmand, J. J., & Amorim, M. J. (2025). Impact of climate change on terrestrial invertebrates-temperature variations in laboratory conditions-from cool to heat waves. Pedosphere. https://doi.org/10.1016/j.pedsph.2025.09.004

Blakemore, R. J. (2025). Biodiversity restated: >99.9% of global species in Soil Biota. ZooKeys, 1224, 283–316. https://doi.org/10.3897/zookeys.1224.131153

Boyce, C. K., & Nelsen, M. P. (2025). Terrestrialization: toward a shared framework for ecosystem evolution. Paleobiology, 51(1), 174–194. https://doi.org/10.1017/pab.2024.15

Briones, M. J. I. (2018). The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Frontiers in Environmental Science, 6(DEC). https://doi.org/10.3389/fenvs.2018.00149

Chamorro-Martínez, Y., Torregroza-Espinosa, A., Morenopallares, M., Osorio, D., Paternina, A., & Echeverría-González, A. (2022). Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: Ecological implications. Revista Brasileira de Ciencia Do Solo, 46, 1–15. https://doi.org/10.36783/18069657rbcs20210132

Chen, Q., Song, Y., An, Y., Lu, Y., & Zhong, G. (2024). Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health. Diversity, 16(12), 734. https://doi.org/10.3390/d16120734

Davison, C. W., Rahbek, C., & Morueta‐Holme, N. (2024). Changes in Danish bird communities over four decades of climate and land‐use change. Oikos, 2024(12), e10697. https://doi.org/10.1111/oik.10697

Devi, K. P., & Jahan, S. (2024). Diversity, Richness, Evenness and Dominance Index Fishes in Ami River Water, Gorakhpur, Uttar Pradesh, India. Journal of Current Research and Studies, 1(2), 9-15. https://journalcurrentresearch.com/pub/jcr/article/view/8

Dong, Z., Wan, S., Ma, Y., Wang, J., Feng, L., Zhai, Y., ... & Chen, G. (2025). Productivity of water and heat resources and cotton yield response to cropping pattern and planting density in cotton fields in arid area. Agricultural Water Management, 307, 109197. https://doi.org/10.1016/j.agwat.2024.109197

Emmerling, C., Herzog, M., Hoffmann, C., & Schieber, B. (2025). Operational soil warming by underground transmission lines impacts on soil microorganisms and related metabolic activities. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1002/jpln.202400554

Faoziyah, U., Rosyaridho, M. F., & Panggabean, R. (2024). Unearthing agricultural land use dynamics in indonesia: Between food security and policy interventions. Land, 13(12), 2030. https://doi.org/10.3390/land13122030

Fatah, A. M. A., Elbanna, S. M., Gamal, M. M., Alharbi, J. S., & Zalat, S. (2025). The influence of agricultural residues and horse manure on chemical and biological properties of soil. Assiut University Journal of Multidisciplinary Scientific Research, 54(1), 181-208. https://doi.org/10.21608/aunj.2024.334814.1103

Franzluebbers, A. J. (2025). Sand is the unifying textural component influencing surface‐soil carbon and nitrogen fractions across undisturbed land uses in North Carolina. Soil Science Society of America Journal, 89(1), e70011. https://doi.org/10.1002/saj2.70011

Ferreira, A. S., Bellini, B. C., & Vasconcellos, A. (2013). Temporal variations of Collembola (Arthropoda: Hexapoda) in the semiarid Caatinga in Northeastern Brazil. Zoologia, 30(6), 639–644. https://www.scielo.br/j/zool/a/hpppf6tjYDfKSYdDGmnkTcT/?lang=en

Godoy, O., Soler‐Toscano, F., Portillo, J. R., & Langa, J. A. (2024). The assembly and dynamics of ecological communities in an ever‐changing world. Ecological Monographs, 94(4), e1633. https://doi.org/10.1002/ecm.1633

Gruss, I., Czarniecka-Wiera, M., Świerszcz, S., Szymura, M., Szymura, T., & Raduła, M. W. (2025). Responses of grassland soil mesofauna to induced climate change. Scientific Reports, 15(1), 16532. https://doi.org/10.1038/s41598-025-01445-w

Harrison, G. T., Dunleavy, H. P., Vasquez-Valverde, L. F., Del Pozo-Valdivia, A. I., Ivanov, K., & Marek, P. E. (2024). Arthropod diversity in shallow subterranean habitats of the Appalachian Mountains. Subterranean Biology, 49, 75-95. https://doi.org/10.3897/subtbiol.49.128521

Hauer, A., Zuev, A., Chatzinotas, A., Jurburg, S., Kümmel, S., & Potapov, A. (2025). Tracking assimilation of microbial biomass, leaf litter and artificially created soil organic matter by soil fauna using multi-resource stable isotope labelling. European Journal of Soil Biology, 126, 103752. https://doi.org/10.1016/j.ejsobi.2025.103752

Khan, M. T., Supronienė, S., Žvirdauskienė, R., & Aleinikovienė, J. (2025). Climate, Soil, and Microbes: Interactions Shaping Organic Matter Decomposition in Croplands. Agronomy, 15(8), 1928. https://doi.org/10.3390/agronomy15081928

Li, J. P., Jiang, S. H., Ma, G. T., Rezania, M., Nezhad, M. M., & Wan, J. H. (2025). Probabilistic evaluation of landslide influence zones considering stratigraphic dips and nonstationarity of soil properties. Computers and Geotechnics, 177, 106815. https://doi.org/10.1016/j.compgeo.2024.106815

Li, Y., Tu, Q., Liu, S., Ding, W., Min, X., Zhou, S., ... & Yuan, C. (2024a). Effects of the combined compost of grape branches and sheep manure on a soil-microorganism-chardonnay (Vitis vinifera L.) plant ecosystem. Scientia Horticulturae, 336, 113430. https://doi.org/10.1016/j.scienta.2024.113430

Li, Z., Yang, X., Long, W., Song, R., Zhu, X., Li, T., Shao, M., Chen, M., & Gan, M. (2024b). Temperature Mainly Determined the Seasonal Variations in Soil Faunal Communities in Semiarid Areas. Land, 13(4), 505. https://doi.org/10.3390/land13040505

Lindberg, N. (2003). Soil fauna and global change. Acta Universitatis Agriculturae Sueciae. Silvestria, (270).

Liu, C., Cheng, H., Wu, Y., Chen, T., Deng, L., Zhang, L., ... & Li, H. (2024a). Evaluation of soil fauna biodiversity in restored farmland for protection of wetland ecology by planting different crops. Ocean & Coastal Management, 247, 106945. https://doi.org/10.1016/j.ocecoaman.2023.106945

Liu, X., Zang, J., Fu, Y., Pan, X., Meng, D., Zhu, Y., & Sun, T. (2024b). Influences of conservation tillage on soil macrofaunal biodiversity and trophic structure in the Mollisol region of Northeast China. Catena, 236, 107750. https://doi.org/10.1016/j.catena.2023.107750

Ludwiczak, E., Topa, E., Nietupski, M., Kosewska, A., & Rozwałka, R. (2024). The influence of humidity gradient in a forest on ground spider assemblages: a preliminary study. The European Zoological Journal, 91(2), 1104-1119. https://doi.org/10.1080/24750263.2024.2403537

Mamabolo, E., Pryke, J. S., & Gaigher, R. (2024). Soil fauna diversity is enhanced by vegetation complexity and no-till planting in regenerative agroecosystems. Agriculture, Ecosystems & Environment, 367, 108973. https://doi.org/10.1016/j.agee.2024.108973

Mazumdar, S., & Mandal, G. P. (2025). Effect of Soil Edaphic Factors on Collembola Diversity: A Case Study. Records of the Zoological Survey of India, 125(2S), 497–508. https://doi.org/10.26515/rzsi/v125/i2S/2025/173004

Nagy, M., Moneim, A. A., & El-Gohary, M. (2025). Biodegradation and weathering of merit-amun statue induced by insects and environmental factors. International Journal of Conservation Science, 16(2), 855-870. https://doi.org/10.36868/IJCS.2025.02.07

Ogedegbe, A., & Edwuonwu, I. C. (2014). Biodiversity of soil arthropods in Nigerian Institute for Oil Palm Research (NIFOR) Nigeria. Journal of Applied Sciences and Environmental Management, 18(3), 377–385. https://www.ajol.info/index.php/jasem/article/view/109849

Ortiz-Ramírez, G., Hernández, E., Pinto-Pacheco, S., & Cuevas, E. (2024). The Dynamics of Soil Mesofauna Communities in a Tropical Urban Coastal Wetland: Responses to Spatiotemporal Fluctuations in Phreatic Level and Salinity. Arthropoda, 2(1), 1–27. https://doi.org/10.3390/arthropoda2010001

Pearson, B. M., Minor, M. A., Robertson, A. W., & Clavijo McCormick, A. L. (2024). Plant invasion down under: exploring the below-ground impact of invasive plant species on soil properties and invertebrate communities in the Central Plateau of New Zealand. Biological Invasions, 26(12), 4215-4228. https://doi.org/10.1007/s10530-024-03441-z

Pedrinho, A., Mendes, L. W., de Araujo Pereira, A. P., Araujo, A. S. F., Vaishnav, A., Karpouzas, D. G., & Singh, B. K. (2024). Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. Plant and Soil, 500(1), 325-349. https://doi.org/10.1007/s11104-024-06489-x

Peng, Z., Qian, X., Liu, Y., Li, X., Gao, H., An, Y., ... & Jiao, S. (2024). Land conversion to agriculture induces taxonomic homogenization of soil microbial communities globally. Nature Communications, 15(1), 3624. https://doi.org/10.1038/s41467-024-47348-8

Peng, Z., Wei, G., & Jiao, S. (2025). Agriculture breaks down traditional biogeographic barriers of soil fungi. One Earth. https://www.cell.com/one-earth/abstract/S2590-3322(25)00252-0

Permadi, I., & Azizi, I. (2024). Agrarian Reform: Implementation and Exploration of Land Conflicts in Several Countries (A Bibliometric and Content Analysis of International Research on the Agrarian Reform Concept). WSEAS Transactions on Environment and Development, 20, 820-834. https://doi.org/10.37394/232015.2024.20.77

Qin, H., Shang, J., Qi, Q., Cao, B., Kong, Y., Li, Y., Chen, J., & Yi, X. (2024). Soil Moisture and Litter Coverage Drive the Altitude Gradient Pattern of Soil Arthropods in a Low-Elevation Mountain. Diversity, 16(5), 263. https://doi.org/10.3390/d16050263

Qiu, Y., Tang, R., Liu, Y., Chen, Y., Shen, Y., Zhuo, S., ... & Chang, S. X. (2025). Field experiment reveals varied earthworm densities boost soil organic carbon more than they increase carbon dioxide emissions. Geoderma, 456, 117251. https://doi.org/10.1016/j.geoderma.2025.117251

Quandahor, P., Kim, L., Kim, M., Lee, K., Kusi, F., & Jeong, I. H. (2024). Effects of agricultural pesticides on decline in insect species and individual numbers. Environments, 11(8), 182. https://doi.org/10.3390/environments11080182

Rabot, E., Saby, N. P., Martin, M. P., Barré, P., Chenu, C., Cousin, I., ... & Bispo, A. (2024). Relevance of the organic carbon to clay ratio as a national soil health indicator. Geoderma, 443, 116829. https://doi.org/10.1016/j.geoderma.2024.116829

Rasmusson, L. M., Strokirk, N., Tedengren, M., & Giese, M. (2025). Acid Sulfate Soils and Their Pathways of Impact: A Swedish Case Study. Ecology and Evolution, 15(7), e71732. https://doi.org/10.1002/ece3.71732

Remelli, S., Danise, T., Galli, L., & Menta, C. (2024). Soil arthropods in bioindication and ecotoxicological approach: The case of the extreme environment Mefite (Ansanto Valley, Southern Italy). Heliyon, 10(16). https://www.cell.com/heliyon/fulltext/S2405-8440(24)12373-0

Ren, H., Lv, H., Xu, Q., Yao, Z., Yao, P., Zhao, N., ... & Zhang, D. (2024). Green manure provides growth benefits for soil mesofauna by promoting soil fertility in agroecosystems. Soil and tillage research, 238, 106006. https://doi.org/10.1016/j.still.2024.106006

Sofo, A., Mininni, A. N., & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4). https://doi.org/10.3390/agronomy10040456

Vanolli, B. S., de Andrade, N., Canisares, L. P., Franco, A. L. C., Pereira, A. P. A., & Cherubin, M. R. (2023). Edaphic mesofauna responses to land use change for sugarcane cultivation: insights from contrasting soil textures. Frontiers in Ecology and Evolution, 11(January), 1–14. https://doi.org/10.3389/fevo.2023.1305115

Waheed, M., Haq, S. M., Arshad, F., Bussmann, R. W., Hashem, A., & Abd_Allah, E. F. (2024). Plant distribution, ecological traits and diversity patterns of vegetation in subtropical managed forests as guidelines for forest management policy. Frontiers in Forests and Global Change, 7, 1406075. https://doi.org/10.3389/ffgc.2024.1406075

Wang, D., Yuan, F., Xie, W., Zuo, J., & Zhou, H. (2024). Effects of leaf size and defensive traits on the contribution of soil fauna to litter decomposition. Forests, 15(3), 481. https://doi.org/10.3390/f15030481

Wang, T., Wang, Y., Wang, Y., Dong, J., & Yu, S. (2025). Temperature effects on forest soil greenhouse gas emissions: Mechanisms. Ecosystem Responses, and Future Directions. Forests, 16(9), 1371. https://doi.org/10.3390/f16091371

Xu, G. L., Kuster, T. M., Günthardt-Goerg, M. S., Dobbertin, M., & Li, M. H. (2012). Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS ONE, 7(8), 23–27. https://doi.org/10.1371/journal.pone.0043102

Zheng, X., Tao, Y., Wang, Z., Kou, X., Wang, H., Wang, S., & Wu, D. (2022). Land-use types influence the community composition of soil mesofauna in the coastal zones of Bohai Bay, China. Diversity, 14(12). https://doi.org/10.3390/d14121035

Downloads

Published

2025-07-30

How to Cite

Numa, A. M., & Susanto. (2025). Assessment of soil mesofauna diversity, dominance, and environmental conditions in paddy field ecosystems with recommendations for sustainable agricultural practices. Journal of Agrosociology and Sustainability, 3(1), 57–74. https://doi.org/10.61511/jassu.v3i1.2025.1862

Issue

Section

Articles

Citation Check